

General Certificate of Education

Mathematics 6360

MS04 Statistics 4

Mark Scheme

2009 examination - June series

er with the

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method			
m or dM	mark is dependent on one or more M marks and is for method			
A	mark is dependent on M or m marks and is for accuracy			
В	mark is independent of M or m marks and is for method and accuracy			
Е	mark is for explanation			

√or ft or F	follow through from previous		
	incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
–x EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

				MS04 - AQA GCE Mark Scheme 2L Mathscloud. Comments	
				MS04 - AQA GCE Mark Scheme 20 MS04	S
S04				YOUR	
Q	Solution	Marks	Total	Comments	CO
1	Differences are: 0, 0, -1, 6, -2, 1, 4, 4, 1, 3	M1			
	H_0 : $\mu_d = 0$	B1		\overline{d} for μ_d and other poor notation B1B0	l
	H_1 : $\mu_d > 0$	B1	1		l
	$\overline{d} = 1.6$	A1	1		l
	s = 2.547	A1	1		l
	$t_{\text{calc}} = \frac{1.6 - 0}{\left(\frac{2.547}{\sqrt{10}}\right)} = 1.986$	M1 A1F			
	v = 9	B1	1		l
	$t_{\text{crit}} = 1.833$	B1	1		l
	Reject H ₀ . Evidence at 5% level to suggest 1st born has higher VR	A1F	10		
	Total		10		ł
2(a)	Independent trials Two outcomes OE Constant probability of success Unlimited number of trials	E1 × 3	3	Any three	
(b)(i)	p + p(1 - p) = 0.2775	M1		$1 - (1 - p)^2 = 0.2775$	1
	$p^2 - 2p + 0.2775 = 0$	m1	1	$1 - (1 - p)^{2} = 0.2775$ $(1 - p)^{2} = 0.2775$ $(1 - p) = 0.85$	İ
	p = 0.15 $(0$	m1	1	(1 p) = 0.2775	İ
	p = 0.13 (0 \ \bar{p} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A1	4	p = 0.15	1
(ii)	$E(Y) = \frac{1}{0.15} = 6.67$	B1F		ft on 0	
	$Var(Y) = \frac{0.85}{0.15^2} = 37.8$	B1	2		l
	Total		9		İ
` '	s = 3.451 $v = 13$	B1 B1		$s^2 = 11.9123$ $\sum (x - \overline{x})^2 = 154.86$	İ
	$\chi^2_{13}(0.01) = 4.107$ $\chi^2_{13}(0.99) = 27.688$	B1			1
	98% CL for σ are $\sqrt{\frac{13 \times 3.451^2}{27.688}}$ and $\sqrt{\frac{13 \times 3.451^2}{4.107}}$	M1 A1√		ft on χ^2 values	[
	98% CI is (2.36, 6.14)	A1	6	AWFW (2.36, 2.37) and (6.135, 6.145)	l
(b)	Sample is from a normal distribution	E1	1		ł
	Total	<u> </u>	7		i

MS04 - AQA GCE Mark Scheme 2L Mainscloud Com

MS04 (cont)

MS04 (cont)			1	Sup
Q	Solution	Marks	Total	Comments
4(a)	$E(\overline{X}_A) = \mu$	B1		
	$Var(\overline{X}_A) = \frac{\sigma^2}{15}$	B1	2	
	$E(\overline{X}_M) = \frac{3}{5}\mu + \frac{2}{5}\mu = \mu$	B1		AG
	$Var(\overline{X}_M) = \frac{9}{25} \times \frac{\sigma^2}{15} + \frac{4}{25} \times \frac{\sigma^2}{10}$	M1		
	$=\frac{\sigma^2}{25}$	A1	3	AG
(ii)	$E(\overline{X}_L) = \frac{1}{2}\mu + \frac{1}{2}\mu = \mu$	B1	1	
(iii)	$Var(\overline{X}_L) = \frac{1}{4} \times \frac{\sigma^2}{15} + \frac{1}{4} \times \frac{\sigma^2}{10}$	M1		
	$=\frac{\sigma^2}{24}$	A1		
	Rel. Eff. $=\frac{24}{\sigma^2} \div \frac{25}{\sigma^2} = \frac{24}{25}$	M1 A1F		ft on $Var(\bar{X}_L)$
	$< 1 \Rightarrow \text{prefer } \bar{X}_M$	E1F	5	OE eg $Var(\bar{X}_M) < Var(\bar{X}_L)$
	Total		11	C MI / L /
5(a)(i)		B1	1	
(ii)	$6p = 1.5 \implies p = 0.25$	B1	1	AG
(b)	H ₀ : distribution is binomial	B1		
	$\begin{array}{c ccccc} O_i & E_i \\ \hline 23 & 17.80 \\ 32 & 35.60 \\ 23 & 29.66 \\ 17 & 13.18 \\ 4 & 3.30 \\ 1 & 0.44 \\ 0 & 0.02 \\ \hline \\ Combine classes \\ & 5.20^2 & 3.60^2 & 6.66^2 & 5.06^2 \\ \end{array}$	M1 M1 A1 M1		Attempt at probabilities Probabilities × 100 ≥ 4 correct (1dp)
	$\chi^{2}_{\text{calc}} = \frac{5.20^{2}}{17.80} + \frac{3.60^{2}}{35.60} + \frac{6.66^{2}}{29.66} + \frac{5.06^{2}}{16.94}$ $= 4.89$	M1 A1		Use of formula AWFW (4.85, 4.95)
	v = 4 - 2 = 2 $\chi^2_{\text{crit}} = 5.991$	B1 B1F		ft on v ($2 \le v \le 6$) (not 5%) ($v = 3 \implies 7.815$)
	Accept H ₀ . Evidence to suggest binomial distribution is an appropriate model	A1√	10	
	Total		12	

MS04 - AQA GCE Mark Scheme 2L Mark Scheme 2L Mark Scheme 2L Mark Scheme 2L Mark Scheme 2L Mark Schould Com

MS04 (cont)

MS04 (cont)		ı		90
Q	Solution	Marks	Total	Comments
6(a)	$S_X^2 = 32.218$	M1		Either
	$S_Y^2 = 5.778$	A1	2	Both correct; condone 2 sf
	a y a company		_	SC: B1 for \geq 1 sd
(b)(i)	$v_1 = 10$, $v_2 = 8$	В1		SC. B1 101 ≤ 1 3u
(6)(1)	$F_{10.8} = 4.295$, $F_{8.10} = 3.855$	B1,B1		
		-		
	$F_{\text{calc}} = \frac{32.218}{5.778} = 5.576$	M1		
	2.773	m1		
	$\frac{1}{4.295} \le \frac{VR}{5.576} \le 3.855$	A1√		ft on v_1 and v_2
	$4.293 3.376$ $\Rightarrow 1.30 \le VR \le 21.5$		_	
	$ \longrightarrow 1.30 \le VK \le 21.3 $	A1	7	Accept 1.3
(ii)	1 ∉ CI ⇒ Variability greater among	E1		
	men from police forces in England	E1	2	Dependent
	Total		11	
7(a)	$F(x) = 1 - e^{-\lambda x} , x \ge 0$	B1		$F(x) = 1 - e^{-\lambda x} B1B0$
	F(x) = 0 , x < 0	B1	2	Dependent
		2.	_	1
(b)	$1 - e^{-\lambda x} = \frac{3}{4}$	M1		For either Q_1 or Q_3
	$1 - e^{-\lambda x} = \frac{3}{4}$ $Q_3 = \frac{1}{\lambda} \ln 4$			m1 for attempting to solve
	$Q_3 = \frac{1}{2} \ln 4$	m1A1		for either Q_1 or Q_3
	Λ			Tor cruier Q1 or Q3
	$1 - e^{-\lambda x} = \frac{1}{4}$			
	$Q_1 = \frac{1}{\lambda} \ln \frac{4}{3}$	A1		
	λ^{-3}			
	$IQR = \frac{1}{\lambda} \ln 3$	A 1	5	AG
	λ^{mis}	AI	3	AU
(c)(i)	$E(X^2) = \int_0^\infty \lambda x^2 e^{-\lambda x} dx$	M1		Limits required
(0)(1)	$D(X) = \int_0^{\infty} h x dx$	1711		Limits required
	$= \left[-x^2 e^{-\lambda x} \right]_0^{\infty} + \int_0^{\infty} 2x e^{-\lambda x} dx$	A1		
		111		
	$= \left[-\frac{2x}{\lambda} e^{-\lambda x} \right]_0^{\infty} + \int_0^{\infty} \frac{2}{\lambda} e^{-\lambda x} dx$	A1		
	$\begin{bmatrix} -\frac{1}{\lambda}e \end{bmatrix}_0 + \int_0^1 \frac{1}{\lambda}e dx$	AI		
	, and the second			
	$= \left[-\frac{2}{\lambda^2} e^{-\lambda x} \right]_0^{\infty}$	A 1	4	
	$\begin{bmatrix} \lambda^2 \end{bmatrix}_0$			
	$=\frac{2}{\lambda^2}$			AG
	$-\frac{1}{\lambda^2}$			AU
(::)	$V_{\text{or}}(Y) = 2 1 1$	B1	1	AG
(ii)	$Var(X) = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$	DI	1	AU
(1) (1)	1, 2, 4	3.61		
(d)(i)	$\frac{1}{\lambda} \ln 3 = \frac{1}{\lambda^2}$	M1		
	$\frac{1}{\lambda} \ln 3 = \frac{4}{\lambda^2}$ $\lambda = \frac{4}{\ln 3}$			
	$\lambda = \frac{1}{\ln 3}$	A 1	2	
			_	
(ii)	$IQR \rightarrow 0$ as $\lambda \rightarrow \infty$	E1	1	
	Total		15	
	TOTAL		75	